最大突破?未来趋势?中美对比?看机器学习教父Tom Mitchell如何作答

亿欧智库 > 智库观点 > 最大突破?未来趋势?中美对比?看机器学习教父Tom Mitchell如何作答

自动化
AI科技大本营
AI科技大本营
2018-05-31 22:10
[ 亿欧导读 ] 机器学习领域的重大突破?AI的发展的未来趋势?中美两国的AI发展有何不同?著名学者Tom Mitchel教授近日接受媒体采访,回答了AI领域从技术到社会影响等多个方面的问题。
,亿欧智库,人工智能,中美对比

近年来,相关技术与应用的迅速发展使得AI与普通人的联系日益密切,但是普通民众对于AI的了解仍旧十分薄弱,一些基础但重要的问题需要专业人士的解答,如机器学习领域最大的突破是什么?AI的功能和边界在过去数年中持续扩大,因此引发了更多的关注和思考,那么在近期和未来,AI领域又会产生怎样的趋势?中美两国成为AI领域最大的参与者,两国在AI领域有何不同?中美两国在AI领域的区分与对比,是许多人当前关注的问题。

近日,机器学习教父Tom Mitchell在AI科技大本营的专访中谈到了这些观点或问题。Tom Mitchell 教授任教于美国卡内基梅隆大学计算机科学学院,同时是该学院的机器学习系主任,早在1997年便出版了《Machine Learning》一书,是机器学习领域的著名学者,被誉为机器学习教父。

本文来自AI科技大本营对Tom Mitchell教授的专访,略有删减和调整。


AI领域的技术与 

1、从 1997 年到现在,机器学习领域最大的突破是什么?

Tom Mitchell:不需要怀疑,深度(神经)网络就是机器学习领域最大的突破。正因如此,我在新书中花了很大篇幅来介绍它。计算机视觉、语音、机器人、游戏等领域的诸多重大进展都是因为深度学习。

 2、Michael Jordan 教授称他“讨厌把机器学习称为 AI”,您怎么看待这个观点?您会如何定义机器学习和AI?

Tom Mitchell:AI 研究的是如何构建具备智能的计算机,机器学习研究的是如何构建能够利用经验自动改进的计算机,这两个问题密切相关。如果你想打造智能计算机(AI),一个好的办法就是打造能够利用经验自动改进的计算机。机器学习是驱动 AI 的关键技术,我是这样看待两者之间的关系的。

 3、AI 领域都有哪些炒作?

Tom Mitchell:深度学习领域的炒作之一就是鼓吹深度学习会取代 AI 领域里所有的符号方法。目前,AI 是包括深度学习在内的各种不同方法的集合,但是有人认为 AI 最终只会剩下深度学习,这就是过度的炒作。

 4、目前的深度学习技术是否可以帮助我们实现全自动驾驶?

Tom Mitchell:我相信,在未来的 10 年内,自动驾驶汽车会大规模普及,但是我不确定我们是否能等到完全不需要司机的自动驾驶汽车。未来,我们会很多自动驾驶汽车,但是他们依然需要人类司机。虽然目前自动驾驶汽车在主要干道上行驶的非常好,但是在 dirt road 上的表现依然很差劲,而这种差距依然会持续一段时间。因此,我认为我们将看到类似滴滴的服务 80% 的里程可以实现无人驾驶,20% 依然需要人类司机。

 5、Yann LeCun 教授在 GMIC 2018 北京大会上特意提到了非监督学习(unsupervised Learning),您是怎样看待非监督学习的?

Tom Mitchell:我相信,当 Yann  LeCun 说非监督学习时,他的意思是机器自己监督自己。我认为它会变得越来越重要,Yann 在这一点上是对的。部分原因是我相信我们将拥有越来越多的持续不断运行的 AI 系统,比如物联网,这意味着冰箱、洗衣机、自动驾驶汽车等等都可能是全天 24 小运作的 AI 系统。

一旦你拥有了不间歇运转的系统,你就可以实现 Yann LeCun 所说的非监督学习。它可以自己收集数据,所有这些系统都可以从学习如何结束,如何对未来进行预测中获益。比如自动驾驶汽车,如果(车的)前面有行人,那么预判行人的下一步动作将会非常有帮助。

尽管 Yann 将其称为非监督学习,但是我认为这是比较特殊的一种非监督学习,因为汽车本身可以看到接下来的场景,因此可以用作训练信号,用来学习如何从当前的状态(t)进行进入到下一个状态(t+1)。

因为没有外界告诉这个系统这里是一个标签,从这点上来说,它可以看作是非监督的。但是实际上是汽车自己在收集标签,因此它实际上是自我监督。

AI领域在近期或未来的趋势

 6、去年以来,AI 领域有哪些最新的趋势?

Tom Mitchell:据我观察,有以下几大趋势:

技术趋势:深度学习和机器学习正在推进 AI 进入更多的新领域,比如我上面提到的,深度学习对计算机视觉、语音识别产生了重要的影响。如今深度学习正在成为 NLP 领域的主宰,当然,最终能有多成功还有待观察,但是在我看来,这个趋势是非常鼓舞人心的。

社会趋势:在技术之外,AI 是如何影响我们的社会的?很多新公司对 AI 的参与度越来越高,此外,越来越多的公民开始关注隐私问题。他们开始意识到,AI 将会影响他们的生活。未来将会是什么样子?以及我们应该怎样看待这些改变?

 7、AI 能够解决 Facebook 如今面临的各种问题吗?

Tom Mitchell:我觉得如今的 AI 只能解决 Facebook 面临的部分问题。比如, 有些人通过组织的方式来在 Facebook 上大规模散播特定的消息,而 AI 在识别这些有意图的组织方面可以发挥很大的作用。

AI 肯定不能解决所有问题。比如隐私问题,因为 AI,用户的数据变得越来越珍贵,这也间接鼓励(公司)搜集更多的数据,因此我不认为 AI 会是解决这个问题的答案。

 8、未来十年 AI 的趋势会是什么?

Tom Mitchell:我认为最大的改变会是对话系统。十年前,没人会跟计算机说话,现在却已经习以为常,但是现在人与计算机之间的对话非常呆板,并不自然。随着 NLP 技术的发展,我认为我们会看到前所未见的对话系统的来临。

在今天,人与计算机之间的对话基本上都是任务型的,比如查询天气、预定机票等等。但是我们没想过用这些对话教计算机我们希望它做的,我认为这会是未来十年里的重要变化之一。比如,我住在匹兹堡,那里经常下雪,我对我的手机说,如果晚上下雪的话,请提前三十分钟叫醒我,我的手机会说,它不明白我说的话的意思,请问我可以教他吗?然后我会告诉我的手机,想要知道今晚是否下雪,先打开天气应用,然后查看实时的天气情况,如果确定正在下雪,那么就打开闹钟应用,把定的闹钟时间往前调三十分钟即可。在教会它以后,我们就拥有了这样一个新功能。

我认为我们将看到对话系统的变革。每个手机用户都能够成为一个程序员,教会手机在出厂时并不具备的新功能,这样每个人都可以参与进来。这意味着,以前只有百分之一的人可以对计算机进行编程,因为他们学习过专门的计算机编程语言,但是现在让计算机学习人类的语言,我们每个人都可以是(对话系统的)老师。

中美两国在AI领域的区别与对比

 9、怎样评价过去一年中国在 AI 领域的发展?

Tom Mitchell:在我看来,中国和美国是 AI 领域最活跃的两个国家。中国非常擅长采取行动,并将其商业化。中国的创业公司特别强劲。

 10、美国的MIT、CMU、斯坦福、哈佛等高校一直是科技浪潮的引领者,中国的高校应该如何像美国高校学习?

Tom Mitchell:在我看来,中国的一些顶尖高校现在都非常棒。目前顶尖 AI 会议上的论文,来自中国的比例正在迅速增长。

 11、有人说,中国的论文是以量取胜,但是质量不行,您怎么看?

Tom Mitchell:我认为这不是质量问题,而是关注点不同。比如,在计算机视觉领域,中国的研究成果和论文数量快速增长。比如一些基于 ImageNet 等标准数据集的测试中,中国公司的成绩排名非常靠前,因此中国是切切实实做了贡献的。在我看来,这是贡献的不同表现形式。在美国可能会有各种不同的方法被发明出来,而中国非常擅长搭建真正有效的系统,比如计算机视觉领域。

 12、所以这不是论文质量的问题,而是中美的关注点不同?

Tom Mitchell:非常正确。世界很大,大家关注不同的事情其实是一件好事。AI 还有很多未解决的问题,我不想说哪种更好。在我看来,大家从不同的角度看待问题,对不同的目标有不同的动机,这才是健康的。实际上,在我看来,不管是美国还是中国,商业活力都非常强劲,我认为这非常赞。我认为中美两国在发展 AI 经济方面都会做的很好,它会创造真正的财富,真正的收益。我认为商业驱动的 AI 是非常健康的,而且在中美都必将取得成功。不过中美之间的最大不同在于,中国有很大的机会在用 AI 造福社会方面取得领先地位。

比如在医疗领域,每隔几年,我们就会面临一次全球性的流行疾病。这些新病毒具有非常强的传染性,我们应该怎么办?现在我们不知道,但是我们可以让 AI 发挥巨大的作用和影响力。比如我们可以构建这样一个系统,如果我去急诊室,然后发现自己感染了某种传染病,那么你就可能接到电话提醒,通知你昨天和我有过近距离的接触,而我染上了某种传染病,并告诉你这种疾病的症状,让你注意。如果我们建成了这种系统,那么等到下次全球性的传染病来临时,情况就会比以往好很多。然而为什么我们迄今没有这套系统?因为没有商业驱动,没有人能够从中赚钱。因此,没有一家公司会愿意投入,而唯一的可能性就是政府的参与,说“我们不在乎是否有利润,这是一件对社会有益的好事,我们来做这件事吧。”

中国是最有可能的。中国有更多的数据,而且中国政府更容易推进某件事。如果政府决定要做这件事,那么需要做些什么呢?它需要设立数据标准,以便急诊室的数据和 GPS 数据相结合,来判断我们是否近距离接触过。因此,我们需要同一的数据标准,方便收集、整合数据,造福社会,尽管无利可图。在我看来,中国的巨大机会在于,向世界展示如何使用社会规模的数据来造福社会。至于那些 AI 商业化的应用,我并不怎么担心,因为它们总是会发生的。只有有利益,就会有人去做。但是很多造福社会的事情常常无利可图,因此如果没有政府的介入和推动的话,这件事永远不可能发生。在这一点上,我认为中国有机会,当然也有责任在里面,来建立这个系统。如果中国能够做成这个系统,那么其他国家就很有可能跟进。


近年来,粤港澳大湾区在打造创新驱动新引擎,科技创新带动资源集聚等方面着力颇多,创新机制、产业升级、人才引流、协同发展等带来了多方面的机遇。相应的,人工智能、人才赋能正深刻地影响着商业步伐。

2018年10月18-19日,亿欧将在深圳举办“引擎·引领” 2018大湾区国际科创峰会(BATi),集合智能制造、智能产品、智慧城市、智慧安防、智慧交通等一众热点问题展开探讨,分析科技创新未来趋势,盘点技术革命下的发展契机。

报名链接:

https://www.iyiou.com/post/ad/id/664?herkunft=6648

“引擎·引领”2018大湾区国际科创峰会(BATi).jpg

打赏支持

5
5
10
20
50
80
100
其它金额
任意赏:

参与评论

关闭
快捷登录11 密码登录
获取验证码

新用户登录后自动创建账号

登录表示你已阅读并同意《亿欧用户协议》

快捷登录 密码登录

账号为用户名/邮箱的用户 选择人工找回

关联已有账户

新用户或忘记密码请选择,快捷绑定

账号为用户名/邮箱的用户 选择人工找回

快速注册

获取验证码

创建关联新账户

发送验证码

找回密码

获取验证码
账号为用户名 / 邮箱的用户 选择人工找回

未完成注册的用户需设置密码

如果你遇到下面的问题

我在注册/找回密码的过程中无法收到手机短信消

我先前用E-mail注册过亿欧网但是现在没有办法通过它登录,我想找回账号

其他问题导致我无法成功的登录/注册

请发送邮箱到service@iyiou.com,说明自己在登录过程中遇到的问题,工作人员将会第一时间为您提供帮助

账号密码登录

乐乐呵呵@微信昵称

该亿欧账号尚未关联亿欧网账户

关联已有账户

曾经使用手机注册过亿欧网账户的用户

创建并关联新账户

曾用微信登录亿欧网但没有用手机注册过亿欧的用户

没有注册过亿欧网的新用户

先前使用邮箱注册亿欧网的老用户,请点击这里进入特别通道